Eternal sounds…

Photo by Spiros Kakos from Pexels

Antonio De Lorenzi takes a seat onstage in the concert hall of Museo del Violino in Cremona, Italy, and carefully tucks a Stradivarius (a violi crafted in 1727 and called Vesuvio) under his chin. Through an earpiece, the ­soloist hears a metronomic beat as a voice says, “Go.”

De Lorenzi draws his bow across the lowest string and plays G for half a beat. He pauses. He then follows with A-flat. Then A. He moves up the scale, never changing his pace as he works through all four strings. Once he finishes, he repeats the exercise, this time sounding each tone just a bit faster. Clearly, this is no ordinary concert—or a typical practice. Outside, police have cordoned off the street to traffic. Inside, workers have shut down the heater despite the January chill, dimmed the lights, and unscrewed any buzzing bulbs. As each solitary note reverberates, an audience of 32 microphones ­dotted throughout the auditorium silently listens.

This was part of a campaign to preserve the Stradi­varius sound. The museum hoped this painstaking exercise grants the rare treasures a degree of immortality so they might enchant future generations. (1)

Humans. Always wanting to keep things alive. Never satisfied with the ephemeral; always seeking the eternal instead. And yet, life itself is ephemeral. The universe is ephemeral. The cosmos itself is shouting: There is nothing that lives forever.

Magic sounds.

Mystical music.

Echoing through the aeons.

Break the violin.

Dead sounds.

Dead music.

Always there.

To remind us that it once was alive…

Can you feel the violin in your hands?

Can you whisper?

“There is nothing that lives forever. Except the things which never did”…

Massive filaments fuel the growth of galaxies and supermassive black holes

Photo by Spiros Kakos from Pexels

Based on direct observations researchers have discovered massive filaments between galaxies in a proto-cluster, extending over more than 1 million parsecs and providing the fuel for intense formation of stars and the growth of super massive black holes within the proto-cluster. (1)

A filament fit for space: Silk is proven to thrive in outer space temperatures

The scientists who discovered that natural silks get stronger the colder they get, have finally solved the puzzle of why. (2)

Delicate structures in space.

Delicate creatures on Earth.

Holding together.

Patiently watching.

Afraid to break.

But it is not the unbreakable that God dreams of.

One day you will break.

And realize that that was what the cosmos was afraid all that time…

Delicate silk. Delicate humans.

Breaking apart.

And within their weakness.

With their cries and despair.

Rising together.

To hold the cosmos in their fragile arms…

Eternal vortices. Ephemeral cosmos.

Photo by Spyros Kakos

In 1949, famous physicist Lars Onsager published a paper discussing the potential implications of superfluids and turbulence.

Now, 70 years later, a team of Australian researchers has conducted an experiment to back his theory – using a tiny quantum version of Jupiter’s ‘Great Red Spot’ to do it. Unlike the Great Red Spot, for this experiment, the researchers went small: microscopically small.

They used superfluid cooled down to just above absolute zero, and held it in place using digital micro mirror devices and lasers, before creating a vortex just 100 micrometres across. TheThe team then generated two vortex clusters and spun them in opposite directions, which demonstrates the stability of the configuration. (1)

Ephemeral change.

Eternal vortices.

In a cosmos constantly stable…

In a cosmos momentarily changing…

The vortices will die at the end.

And the universe will stay silent.

Whispering…

Ephemeral vortices.

Eternal change…

Bubbles… Being…

Photo by Pixabay from Pexels

The flow of granular materials, such as sand and catalytic particles used in chemical reactors, and enables a wide range of natural phenomena, from mudslides to volcanos, as well as a broad array of industrial processes, from pharmaceutical production to carbon capture. While the motion and mixing of granular matter often display striking similarities to liquids, as in moving sand dunes, avalanches, and quicksand, the physics underlying granular flows is not as well-understood as liquid flows.

Now, a recent discovery by Chris Boyce, assistant professor of chemical engineering at Columbia Engineering, explains a new family of gravitational instabilities in granular particles of different densities that are driven by a gas-channeling mechanism not seen in fluids. Boyce’s team observed an unexpected Rayleigh-Taylor (R-T)-like instability in which lighter grains rise through heavier grains in the form of “fingers” and “granular bubbles.” R-T instabilities, which are produced by the interactions of two fluids of different densities that do not mix — oil and water, for example — because the lighter fluid pushes aside the heavier one, have not been seen between two dry granular materials.

The study, published in the Proceedings of the National Academy of Sciences, is the first to demonstrate that “bubbles” of lighter sand form and rise through heavier sand when the two types of sand are subject to vertical vibration and upward gas flow, similar to the bubbles that form and rise in lava lamps. (1)

In a world full of being, bubbles of existence will always emerge.

Don’t be too fascinated by them. For when you try to catch them, they vanish.

In a cosmos looking up to the stars, people forget to look beyond the world.

Don’t be fooled.

It is not the bubbles rising to the sky.

 It is the sky coming down on them…

At some point it will touch you.

And you will start rising along with them…

Fragile and awesome.

Ready to explode…

At the very first touch of death…

Big data… Plants… Planets… Universe…

Photo by Khoa Võ from Pexels

A group of Florida Museum of Natural History scientists has issued a “call to action” to use big data to tackle longstanding questions about plant diversity and evolution and forecast how plant life will fare on an increasingly human-dominated planet.

In a commentary published today in Nature Plants, the scientists urged their colleagues to take advantage of massive, open-access data resources in their research and help grow these resources by filling in remaining data gaps.

“Using big data to address major biodiversity issues at the global scale has enormous practical implications, ranging from conservation efforts to predicting and buffering the impacts of climate change,” said study author Doug Soltis, a Florida Museum curator and distinguished professor in the University of Florida department of biology. “The links between big data resources we see now were unimaginable just a decade ago. The time is ripe to leverage these tools and applications, not just for plants but for all groups of organisms”. (1)

Trying to understand the big picture.

By analyzing it all.

But you can never judge a book by reading all its pages.

You just read one. And then throw it away. Since you will already filled with the undying spirit of the author’s inspiration.

You can never judge a bottle of wine by drinking it all.

You just get a sip. And then spit it out. For you will be already full with the perfection of its taste and the distinctiveness of its aroma.

We cannot judge the cosmos by knowing everything about it. But only by sensing it to the point of remembering nothing about it.

Just see a butterfly fly.

Watch it die.

Sense eternity in its every dying breath…

Exit mobile version
%%footer%%