N-problems… Understanding nothing…

Advertisements
Photo by Spiros Kakos from Pexels

Physicists are proposing a new model that could demonstrate the supremacy of quantum computers over classical supercomputers in solving optimization problems. They demonstrate that just a few quantum particles would be sufficient to solve the mathematically difficult N-queens problem in chess even for large chess boards. (1)

Solving problems with less.

Reaching at the end without leaving the beginning.

Dying before ever living.

That is the essence of life.

That there is no essence.

Look into the void. Rendering any problem meaningless.

Including life. The biggest problem of them all.

For in this perfect world you should know.

That everything which cannot be understood, should not…

Changing geometry. Blurry lines…

Advertisements
Photo by Spiros Kakos from Pexels

Atomic interactions in everyday solids and liquids are so complex that some of these materials’ properties continue to elude physicists’ understanding. Solving the problems mathematically is beyond the capabilities of modern computers, so scientists at Princeton University have turned to an unusual branch of geometry instead.

Researchers led by Andrew Houck, a professor of electrical engineering, have built an electronic array on a microchip that simulates particle interactions in a hyperbolic plane, a geometric surface in which space curves away from itself at every point. A hyperbolic plane is difficult to envision — the artist M.C. Escher used hyperbolic geometry in many of his mind-bending pieces — but is perfect for answering questions about particle interactions and other challenging mathematical questions. (1)

Draw a line on the paper.

Look at the circle on the sand.

A teardrop falling on water.

The moon circling the Earth.

A circle turning into a square.

Sun turning into darkness.

The ink is blurring now.

The line is fading.

And with strange aeons…

Even the paper will reduce into dust.

Your geometry will be lost. Along with everything reminding it. You will be alone at the end. And your tears will fall in the water. And they will create circles again. Don’t cry. Just take the pen. Don’t wander whether you can draw one on paper. You know you can…

Listening to music. Humans. Apes.

Advertisements
Photo by Spiros Kakos from Pexels

In the eternal search for understanding what makes us human, scientists found that our brains are more sensitive to pitch, the harmonic sounds we hear when listening to music, than our evolutionary relative the macaque monkey. The study, funded in part by the National Institutes of Health, highlights the promise of Sound Health, a joint project between the NIH and the John F. Kennedy Center for the Performing Arts that aims to understand the role of music in health.

“We found that a certain region of our brains has a stronger preference for sounds with pitch than macaque monkey brains,” said Bevil Conway, Ph.D., investigator in the NIH’s Intramural Research Program and a senior author of the study published in Nature Neuroscience. “The results raise the possibility that these sounds, which are embedded in speech and music, may have shaped the basic organization of the human brain.” (1)

Yes, we are the only ones listening to music.

Because our mind is never here.

We love traveling to the stars.

Only because we detest the Earth on which we were born.

We will learn one day.

When we reach the stars.

That those bright small dots we will see.

Is our home.

Which we have left a long time ago…

Chameleon theory (theories)… Everlasting worlds…

Advertisements
Photo by Spiros Kakos from Pexels

Supercomputer simulations of galaxies have shown that Einstein’s theory of General Relativity might not be the only way to explain how gravity works or how galaxies form.

Physicists at Durham University, UK, simulated the cosmos using an alternative model for gravity — f(R)-gravity, a so called Chameleon Theory.

The resulting images produced by the simulation show that galaxies like our Milky Way could still form in the universe even with different laws of gravity.

The findings show the viability of Chameleon Theory — so called because it changes behaviour according to the environment — as an alternative to General Relativity in explaining the formation of structures in the universe. (1)

Changing theories.

The same as any other theory.

And at the end the changing theory will be accused of plasticity.

At the end, the rigid theory will be accused of dogmatism.

But why change? Why stay the same?

Why not question your own existence?!

I am the voice of silence. The destroyer of worlds.

Look at me! I explain nothing!

And yet people worship me.

Fools.

Looking for gold.

And yet during the gold rush it was not the ones seeking gold who made rich.

But those who sold shovels.

Look at what is not in the theories.

And you will discover the unchanged essence of the world.

There, between words.

Whole worlds are speaking…

Measuring laws…

Advertisements
Photo by Spiros Kakos from Pexels

One of the fundamental physical constants, the ‘weak axial vector coupling constant’ (gA), has now been measured with very high precision for the first time. It is needed to explain nuclear fusion in the sun, to understand the formation of elements shortly after the Big Bang, or to understand important experiments in particle physics. With the help of sophisticated neutron experiments, the value of gA has now been determined with an accuracy of 0.04%. (1)

Trying to measure constants.

To formulate models.

Which need more constants.

Which we then have to measure.

Until we measure everything.

Until we have defined all constants.

What a stable world that would be.

Perfectly defined.

Perfectly modeled.

It is raining.

Let’s find shelter.

Come on.

And in that stable world.

A kid.

And in the fierce rain.

Takes a step forward.

Into the rain.

Laughing!

Ruining everything!