From electrons to photons. From photons to electrons…

Advertisements

68a6ece72707c3f4fc96966d11243738

The quantum computer of the future will be able to carry out computations far beyond the capacity of today’s computers. Quantum superpositions and entanglement of quantum bits (qubits) make it possible to perform parallel computations.

Making useful computations requires large numbers of qubits and it is this upscaling to large numbers that is providing a challenge worldwide. “To use a lot of qubits at the same time, they need to be connected to each other; there needs to be good communication”, explains researcher Nodar Samkharadze. At present the electrons that are captured as qubits in silicon can only make direct contact with their immediate neighbors. That makes it tricky to scale up to large numbers of qubits.

Some quantum systems use photons for long-distance interactions. Delft scientists have shown that a single electron spin and a single photon can be coupled on a silicon chip. This coupling makes it possible in principle to transfer quantum information between a spin and a photon. This is important to connect distant quantum bits on a silicon chip, thereby paving the way to upscaling quantum bits on silicon chips. (1)

Once the cosmos just was. In the beginning there was darkness.

And then came light. Making things visible. Splitting the cosmos into multiple pieces. A cosmos seemingly full of antinomies. And yet still solid and consistent as that first dark night…

Now we transfer the cosmos back into the light. A light which will interfere with itself. Only to show that the zillions of possibilities exist at the same time.

Some time ago, the cosmos was born into light.

But the light will fade away.

One electron at a time…

The pieces are going to disappear.

One interaction at a time…

The universe is going to die.

And only then, will we see that it was never born…

Light speed. Less than 1000 m/s.

Advertisements

Researchers at TU Wien were the first to successfully detect Weyl particles in strongly correlated electron systems – that is, materials where the electrons have a strong interaction with each other. In materials like this, the Weyl particles move extremely slowly, despite having no mass.

“The strong interactions in such materials usually lead, via the so-called Kondo effect, to particles behaving as if they had an extremely large mass”, explains Sami Dzsaber. “So it was astonishing for us to detect Weyl fermions with a mass of zero in this particular type of material”. According to the laws of relativity, free massless particles must always spread at light speed. This is, however, not the case in solid states: “Even though our Weyl fermions have no mass, their speed is extremely low,” says Bühler-Paschen. The solid state lends them its own fixed ‘light speed’ to a certain extent. This is lower than 1000 m/s, i.e. only around three millionth of the speed of light in a vacuum. “As such, they are even slower than phonons, the analogue to the water wave in the solid state, and this makes them detectable in our experiment”. (1)

Low speeds. High speeds.

What is the difference?

The light is fast. But not for light.

Weyl particles are slow. But not for Weyl particles.

The limits you imagine are not there.

Imagine a Weyl particle.

Fast as 10 m/s…

Massless particles. Heavy particles.

High speed particles. Low speed particles.

Depending on the environmental interactions.

Remove them and see.

Everything is fast. Everything is slow…

Imagine a Weyl particle. Fast as light…

In the beginning everything was still and fast as light at the same time. Until we came. And started observing… The cosmos was once still and, thus, fast like lightning. Then the cosmos started moving. And everything came to a halt.

Note: Weyl particles are not particles which can move on their own (like electrons or protons), they only exist as ‘quasiparticles’ within a solid material. “Quasiparticles are not particles in the conventional sense, but rather excitations of a system consisting of many interacting particles”, explains Prof. Silke Bühler-Paschen from the Institute of Solid State Physics at TU Wien. In some sense, they are similar to a wave in water. The wave is not a water molecule, rather it is based on the movement of many molecules. When the wave moves forward, this does not mean that the particles in the water are moving at that speed. It is not the water molecules themselves, but their excitation in wave form that spreads. After physician Paul Dirac had arrived at his Dirac equation in 1928, which can be used to describe the behavior of relativistic electrons, Hermann Weyl found a particular solution for this equation – namely for particles with zero mass, or ‘Weyl fermions’. The neutrino was originally thought to be such a massless Weyl particle, until it was discovered that it does indeed have mass. The mysterious Weyl fermions were, in fact, detected for the first time in 2015.

Negative mass. Impossibilities. Dasein.

Advertisements

Matter with negative mass, a seeming impossibility, could actually have existed in the early universe, a new study shows.

A novel solution to Einstein’s equations for gravity permits the existence of negative mass in a rapidly expanding universe like our own, physicists Manu Paranjape and Saoussen Mbarek of the University of Montreal report November 14 in Physical Review D.

Although the research doesn’t prove that such exotic particles once floated around the cosmos, it suggests that negative mass could have played a major role in the epoch called inflation, when the universe ballooned in size just after the Big Bang. (1)

We live in a world full of impossibilites.
Impossibilities that are all somehow somewhere possible.
Thrown into this world, we crave for explanations.
While we should just experience it.
Nothing needs to be explained.
Everything just is.
Everything impossible.
Everything possible.
Feeling the cosmos.
No mind.
Being.

PS. Negative mass is the key component of a time machine according to some theories. Imagine. Negative mass at the beginning. A time machine. Everyhing One. Everything interconnected. It all adds up. In a weird way I cannot explain…

u-bit: The new “God”

Advertisements

Bill Wootters of Williams College in Williamstown, Massachusetts tries to make quantum theory to be based only on real (and not imaginary) numbers. In his quest to do so, he has formulated a theory of a “master bit” called u-bit, which transcends the whole cosmos and interferes with all things. This is the only way to solve the “information loss” problem of current quantum physics theories (when a wavefunction collapses, it takes a specific real number value as compared to the multitude of complex values it can take before the collapse), while it also makes the whole theory more intuitive. The bad news is that this theory means that quantum computers are not possible to make. (this u-bit interacts with everything – you cannot isolate a system as we imagine we can do) (1)

We keep discovering other names for what the old ones knew a long long time ago before us. Something magical transcends the cosmos. And we feel it in every aspect of our life. We need it to give meaning to what we see, whether this is quantum theories or simply… life!

Denying it is like denying our very own existence…
Or simply as denying quantum physics. 😉

Nothing can have meaning unless something gives that to it… Whether you call Him “God”, “human”, “Maria”, “chair”, “ideas”, “consciousness”, “aether”, “quantum field” or… “u-bit”, God is here!