Electrical paradoxes. (Do they exist?)

Advertisements

 

a80e2df84dc80bba94feac3ce226bffe

A number of chemistry researchers from several institutions including Lund University in Sweden, have managed to identify a new mechanism that makes certain charged biomolecules attach to each other. The biomolecules in the present study serve as models for antibacterial peptides, that is, protein-like molecules that fulfil important functions in the body.

“Antibacterial peptides are important for our immune system. If we can figure out how they work, it may be of value in the development of new drugs”, says Mikael Lund, chemistry researcher at Lund University.

The present study combines theoretical computer models with experiments. The researchers were very surprised when the data indicated that the small biomolecules were drawn to each other even though they had the same electrical charge. Nevertheless, the results were later confirmed by experiments.

“We were very surprised. These biomolecules have a high electrical charge, and the expectation was therefore that this would make them push each other away”, says Mikael Lund.

Instead, the biomolecules in this study demonstrated apparently paradoxical behaviour. And the explanation for this lies at the atomic level. More specifically, it is about how certain atoms bind together at the ends of the molecular chain. The researchers’ study can be described as atomic level detective work, which involves mapping the exact structure of all the atoms of the molecule. (1)

A really surprising result.

But only for those who believed science in the first place.

Should they repel each other?

Do electrical charges exist in the first place?

The rules are based on observations. And the more observations we make the more rules we seek breaking apart in pieces. Until we observe everything. Until we learn that there are no rules…

X, Y, Male, Female…

Advertisements

In most mammals, us included, biological sex is determined by a lottery between two letters: X and Y, the sex chromosomes. Inherit one X each from mom and dad, and develop ovaries, a womb and a vagina. Inherit an X from mom and a Y from dad, and develop testes and a penis.

But there are rare, mysterious exceptions. A small number of rodents have no Y chromosomes, yet are born as either females or males, not hermaphrodites. Now, scientists may be one step closer to figuring out how sex determination works in one of these rodents.

In a study published in Science Advances, Japanese scientists suggested that cells of the endangered Amami spiny rat, from Japan, are sexually flexible and capable of adapting to either ovaries or testes. When the researchers injected stem cells derived from a female rat into male embryos of laboratory mice, the cells developed into and survived as sperm precursors in adult males. The result was surprising since scientists have never been able to generate mature sperm from female stem cells, largely because sperm production normally requires the Y chromosome. (1)

Even matter itself shows us not to trust her.

It changes, adapts, follows rules and then brakes them.

And yet we believe that our mind is just matter.

But it is not. It is a living being.

It changes, adapts, follows rules and then brakes them…

See beyond your brain. Think beyond your eyes.

You are not who you are because of them.

You are the law breaker.

And they are the police…