**Tags**

children, infinite, learning, mathematics, numbers, One, whole-parts

We can assume that children learn to count starting with one and followed by the lists of numbers in ascending order of cardinality (one, two, three). But besides numbers, in languages there are more words that express quantity such as all, some, most, none, etc., the so-called quantifiers.

A recent study into childhood language in 31 languages, in which UPV/EHU researchers have participated, has reached the surprising conclusion that in all the languages studied, children acquire the quantifiers in the same order, irrespective of the properties of the language in question. The children acquire the words referring to totality earlier than the ones covering only one part of the set. (1)

Babies learning the notion of total. Then growing up. Learning the notion of numbers. Then the notion of infinite. How logical is that sequence? We learn numbers and we only meet “infinite” when we are graduate students. And yet, we accept it with no effort against all odds. We find it difficult to understand numbers and yet easy to accept a notion that is not even close to be observed or experienced by our “limited” nature. And yet here we are. Talking about the One, about infinite. Infinite is supposedly a “difficult” advanced notion which is part of university curriculum and yet we had already learnt it. When we were kids. When we thought about “totality” as a notion only because we already knew it…

We are hardwired to see the One.

We are then forced to see the parts.

We fight against ourselves every day.

We learn to deny our nature every day.

In order to learn, we must unlearn what we have learnt.

1, 2, 3, … ∞

1, ∞

1

larryzb

said:See the One in the many, diverse parts.

skakos

said:Yes, something like that! 🙂