Playing itself…

Photo by Spiros Kakos from Pexels

Scientists have created a nano-electronic circuit which vibrates without any external force. Just as a guitar string vibrates when plucked, the wire — 100,000 times thinner than a guitar string — vibrates when forced into motion by an oscillating voltage. The surprise came when they repeated the experiment without the forcing voltage. Under the right conditions, the wire oscillated of its own accord. The nano-guitar string was playing itself.

Lead researcher Dr Edward Laird of Lancaster University said: “It took us a while to work out what was causing the vibrations, but we eventually understood. In such a tiny device, it is important that an electrical current consists of individual electrons. The electrons hop one by one onto the wire, each giving it a small push. Usually these pushes are random, but we realised that when you control the parameters just right, they will synchronise and generate an oscillation.” (1)

“Under the right conditions”…

Hmmm…

I wonder if anything can ever happen under the WRONG ones…

Delusional we are. Believing in the non-existence.

This is the basis of our “knowledge”.

That something may NOT happen. That something is NOT possible.

And under the right conditions, we discover it can happen.

And under the right conditions, we discover it is possible…

Search your soul.

Nothing is impossible.

Except your innate ability to consider things impossible…

Denoting that nothing is!

Chaos. Numbers. Simulations.

Photo by Spiros Kakos from Pexels

Digital computers use numbers based on flawed representations of real numbers, which may lead to inaccuracies when simulating the motion of molecules, weather systems and fluids, find scientists.

The study, published today in Advanced Theory and Simulations, shows that digital computers cannot reliably reproduce the behaviour of ‘chaotic systems’ which are widespread. This fundamental limitation could have implications for high performance computation (HPC) and for applications of machine learning to HPC.

Professor Peter Coveney, Director of the UCL Centre for Computational Science and study co-author, said: “Our work shows that the behaviour of the chaotic dynamical systems is richer than any digital computer can capture. Chaos is more commonplace than many people may realise and even for very simple chaotic systems, numbers used by digital computers can lead to errors that are not obvious but can have a big impact. Ultimately, computers can’t simulate everything.”

The team investigated the impact of using floating-point arithmetic — a method standardised by the IEEE and used since the 1950s to approximate real numbers on digital computers.

Digital computers use only rational numbers, ones that can be expressed as fractions. Moreover the denominator of these fractions must be a power of two, such as 2, 4, 8, 16, etc. There are infinitely more real numbers that cannot be expressed this way. (https://www.sciencedaily.com/releases/2019/09/190923213314.htm)

An irrational universe.

Full of irrational people.

Trying to analyze it rationally.

Under the illusion that number we have invented can draw a sketch of the cosmos. And yet, nothing we have invented is anywhere to be seen but on a piece of paper. Can you limit the birth of a star on a piece of paper? Can you contain the death of the universe on an equation?

We believe we can.

And sadly, we do.

And at the moment we do, the universe indeed dies…

And a small voice will whisper in our ear…

Congratulations. You have now understood it all.

How irrationally rational everything is!

And inside the darkest night you will dance.

Laughter.

And for a brief moment the forest will look at you.

Crying.

And for a brief moment the forest will see nothing…

But an empty broken CD. Full of data. Full of life…

Statistical significance. Not so… significant!

Photo by Spiros Kakos from Pexels

In science, the success of an experiment is often determined by a measure called “statistical significance.” A result is considered to be “significant” if the difference observed in the experiment between groups (of people, plants, etc) would be very unlikely if no difference actually exists. The common cutoff for “very unlikely” is that you’d see a difference as big or bigger only 5 percent of the time if it wasn’t really there — a cutoff that might seem, at first sight, very strict.

Statistical significance has been used to draw a bright line between experimental success and failure. Achieving an experimental result with statistical significance often determines if a scientist’s paper gets published or if further research gets funded. That makes the measure far too important in deciding research priorities, statisticians say, and so it’s time to throw it in the trash.

More than 800 statisticians and scientists are calling for an end to judging studies by statistical significance in a comment published in Nature. An accompanying special issue of the American Statistician makes the manifesto crystal clear in its introduction: “‘statistically significant’ — don’t say it and don’t use it.” Science and statistics have never been so simple as to cater to convenient cutoffs. A P value, no matter how small, is just a probability. It doesn’t mean an experiment worked. And it doesn’t tell you if the difference in results between experimental groups is big or small. In fact, it doesn’t even say whether the difference is meaningful.

There is good reason to want to scrap statistical significance. But with so much research now built around the concept, it’s unclear how — or with what other measures — the scientific community could replace it. (1)

All science is based on the probability that something will happen.

But it is the improbable things which shape the cosmos.

The birth of the universe.

The death of a God.

The genesis of a human being…

People living for the wrong things.

People dying for the right ones.

Yes, it is a paradoxical world. Not a sane one.

Stop looking at the probable things.

Look at the clouds. Feel the sun behind them.

There is nothing more dull than the things which happen.

Predicting everything. Knowing it all.

The cornerstone of our civilization.

The cause of our demise.

Can you ever predict anything without knowing everything?

Can you ever know anything without already experiencing everything?

Start looking at the things which will never happen.

And right when you won’t be looking…

You will know they already did!

Citizens’ science… Nothing to do with science…

Photo by Ludvig Hedenborg from Pexels

Hundreds of thousands of volunteers have helped to overturn almost a century of galaxy classification, in a new study using data from the longstanding Galaxy Zoo project. The new investigation uses classifications of over 6000 galaxies to reveal that ‘well known’ correlations between different features are not found in this large and complete sample. (1)

By encoding their specialized knowledge into a computer game, researchers enabled citizen scientists to successfully design synthetic proteins for the first time. (2)

Science was once upon a time something for the elite few. Now it is a matter of everyone. Science was once upon a time related to wisdom. Now it is related to date analysis. Science was once upon a time part of our belief in God. Now we just believe in us. We used to be part of God. Knowing everything by bring part of it. Now we observe the million pieces we have created. At the end we will know everything. But not everything that there is. But everything that we want them to be. For we are not actually observing anything. But we have set up mirrors. To observe our selves… Through the looking glass…

Small tiny people…

Classifying galaxies…

Non-water. Inside the dead forest.

Photo by Vlad Bagacian from Pexels

Led by Professors Raffaele Mezzenga and Ehud Landau, a group of physicists and chemists from ETH Zurich and the University of Zurich have identified an unusual way to prevent water from forming ice crystals, so even at extreme sub-zero temperatures it retains the amorphous characteristics of a liquid.

In a first step, the researchers designed and synthesized a new class of lipids (fat molecules) to create a new form of “soft” biological matter known as a lipidic mesophase, by mixing those lipids with water. In the newly created material, the lipids spontaneously self-assemble and aggregate to form membranes. These membranes form a network of connected channels less than one nanometer in diameter. In this structure, there is no room in the narrow channels for water to form ice crystals, so it remains disordered even at extreme sub-zero temperatures. The lipids do not freeze either.

Using liquid helium, the researchers were able to cool a lipidic mesophase consisting of a chemically modified monoacylglycerol to a temperature as low as minus 263 degrees Celsius, which is a mere 10 degrees above the absolute zero temperature, and still no ice crystals formed. (1)

Water freezes at zero degrees.

Unless you mix it with something else.

But then, it is not water.

And it can freeze at lower temperatures.

Everything is what it is.

But it can change to something else.

At the end, all things freeze at the same temperature.

If they are the same.

Or at different. If they are not.

Nature doesn’t care.

In the deepest cold…

Under the heat of the summer sun…

There are no temperatures.

Just things which boil and freeze.

There are many paths inside the forest of existence.

Do you care about how Achilles will reach the turtle?

Possibilities.

There is nothing to compare anything with.

For everything is connected with everything.

And all measurements are just reflections in the mirror.

Potential.

At the end you will be in the clearing…

Only to realize that the clearing is you.

Consumed by fire.

Breathing cold air…

Exit mobile version
%%footer%%