Faster than light. In nothingness…

Advertisements
Photo by Magda Ehlers from Pexels

It has long been known that charged particles, such as electrons and protons, produce the electromagnetic equivalent of a sonic boom when their speeds exceed that of photons in the surrounding medium. This effect, known as Cherenkov emission, is responsible for the characteristic blue glow from water in a nuclear reactor, and is used to detect particles at the CERN Large Hadron Collider.

According to Einstein, nothing can travel faster than light in vacuum. Because of this, it is usually assumed that the Cherenkov emission cannot occur in vacuum. But according to quantum theory, the vacuum itself is packed full of “virtual particles,” which move momentarily in and out of existence.

These ghostly particles are usually not observable but, in the presence of extremely strong electric and magnetic fields, they can turn the vacuum into an optical medium where the speed of light is slowed down so that high velocity charged particles can emit Cherenkov gamma rays. This is totally unexpected in a vacuum.

A group of Physics researchers at Strathclyde have found that in extreme conditions, such as found at the focus of the world’s most powerful lasers, and the huge magnetic fields around neutron stars, this ‘polarised’ vacuum can slow down gamma rays just enough for Cherenkov emission to occur. (1)

In the cosmos of phenomena, even nothing is not real.

And in the void of existence, something will always be.

In a universe ruled by light, things still travel faster than it.

Defying the rules. For the only rule is that there are no rules.

In a cosmos of being, everything can and will exist.

Only to show that being is defining the definitions.

Watch that particle travel faster than light.

It is not traveling at all, you know.

You are…

Ask it and it will tell you. It is standing still.

Watching you traveling faster than light…

And yet, it makes the same mistake as you did.

It never asked you whether you feel running…

Longevity. Xenon 124. Universe.

Advertisements
Photo by Tatiana Syrikova from Pexels

Theory predicts the isotope’s radioactive decay has a half-life that surpasses the age of the universe “by many orders of magnitude,” but no evidence of the process has appeared until now.

An international team of physicists that includes three Rice University researchers – assistant professor Christopher Tunnell, visiting scientist Junji Naganoma and assistant research professor Petr Chaguine – have reported the first direct observation of two-neutrino double electron capture for xenon 124, the physical process by which it decays. Their paper appears this week in the journal Nature.

While most xenon isotopes have half-lives of less than 12 days, a few are thought to be exceptionally long-lived, and essentially stable. Xenon 124 is one of those, though researchers have estimated its half-life at 160 trillion years as it decays into tellurium 124. The universe is presumed to be merely 13 to 14 billion years old.

The new finding puts the half-life of Xenon 124 closer to 18 sextillion years. (For the record, that’s 18,000,000,000,000,000,000,000.) (1)

We look up to the universe.

We admire the cosmos in awe.

But the cosmos is nothing more than the shell.

What is in it, is important.

Even particles can outlive the universe.

What matters is what cannot.

One day we will discover how huge the cosmos really is.

One day we will know how tiny we actually are.

And only then, will we understand that we were wrong.

About how significant we are.

Especially because we are not…

Non-water. Inside the dead forest.

Advertisements
Photo by Vlad Bagacian from Pexels

Led by Professors Raffaele Mezzenga and Ehud Landau, a group of physicists and chemists from ETH Zurich and the University of Zurich have identified an unusual way to prevent water from forming ice crystals, so even at extreme sub-zero temperatures it retains the amorphous characteristics of a liquid.

In a first step, the researchers designed and synthesized a new class of lipids (fat molecules) to create a new form of “soft” biological matter known as a lipidic mesophase, by mixing those lipids with water. In the newly created material, the lipids spontaneously self-assemble and aggregate to form membranes. These membranes form a network of connected channels less than one nanometer in diameter. In this structure, there is no room in the narrow channels for water to form ice crystals, so it remains disordered even at extreme sub-zero temperatures. The lipids do not freeze either.

Using liquid helium, the researchers were able to cool a lipidic mesophase consisting of a chemically modified monoacylglycerol to a temperature as low as minus 263 degrees Celsius, which is a mere 10 degrees above the absolute zero temperature, and still no ice crystals formed. (1)

Water freezes at zero degrees.

Unless you mix it with something else.

But then, it is not water.

And it can freeze at lower temperatures.

Everything is what it is.

But it can change to something else.

At the end, all things freeze at the same temperature.

If they are the same.

Or at different. If they are not.

Nature doesn’t care.

In the deepest cold…

Under the heat of the summer sun…

There are no temperatures.

Just things which boil and freeze.

There are many paths inside the forest of existence.

Do you care about how Achilles will reach the turtle?

Possibilities.

There is nothing to compare anything with.

For everything is connected with everything.

And all measurements are just reflections in the mirror.

Potential.

At the end you will be in the clearing…

Only to realize that the clearing is you.

Consumed by fire.

Breathing cold air…

Reducing resistance… Non-knowledge…

Advertisements
Photo by Nick Wehrli from Pexels

The realization of so-called topological materials – which exhibit exotic, defect-resistant properties – has opened up a new realm in materials discovery.

Several of the hotly studied topological materials to date are known as topological insulators. Their surfaces are expected to conduct electricity with very little resistance, somewhat akin to superconductors but without the need for incredibly chilly temperatures, while their interiors do not conduct current.

A team of researchers working at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) discovered the strongest topological conductor yet, in the form of thin crystal samples that have a spiral-staircase structure. The team’s study of crystals, dubbed topological chiral crystals, is reported in the journal Nature. (1)

We try to find ways to conduct electricity better through the materials we build. But the best way not to block the flow of something is not to build anything in its path in the first place.

We have split the cosmos into pieces.

And we try to find our way from one piece to the other.

But what is the next number of zero?

Strange.

Can you find the next number of one?

Ask simple questions.

And your inability to answer will guide you through the dark forest of knowledge…

It used to be an illuminated forest.

Full of the light of ignorance.

But you chose to illuminate it. And everything went dark.

One step…

Two steps…

Three steps…

Strange.

From the moment I started walking…

It feels like I am not walking at all…

Heat waves. Like… sound waves?

Advertisements
Photo by Spiros Kakos from Pexels

The next time you set a kettle to boil, consider this scenario: After turning the burner off, instead of staying hot and slowly warming the surrounding kitchen and stove, the kettle quickly cools to room temperature and its heat hurtles away in the form of a boiling-hot wave.

We know heat doesn’t behave this way in our day-to-day surroundings. But MIT researchers observed this seemingly implausible mode of heat transport, known as “second sound,” in a rather commonplace material: graphite.

At temperatures of 120 kelvin (-240 degrees Fahrenheit), they saw clear signs that heat can travel through graphite in a wavelike motion. Points that were originally warm are left instantly cold, as the heat moves across the material at close to the speed of sound. The behavior resembles the wavelike way in which sound travels through air, so scientists have dubbed this exotic mode of heat transport “second sound.”

The discovery, published in Science, suggests that graphite, and perhaps its high-performance relative, graphene, may efficiently remove heat in microelectronic devices in a way that was previously unrecognized. (1)

The world seems dominated by waves.

Waves of gravity.

Waves of sound.

Heat waves.

Waves on the rough sea.

Waves of people moving together.

Places of high heat. Places of extreme cold.

Taking turns in the split of a second.

Because there is no heat to be transferred.

Only the cosmos’ potential to change on the spot.

A cosmos full of consciousness.

A cosmos full of empty space.

Both taking turns on the substrate of existence.

With Being orchestrating everything.

A rock on a pond.

Generating waves.

Watch the waves reaching the shore.

Slowing degrading.

No, it is not the rock which made them be.

But the surface of the lake itself.

Look deep inside that lake, and you will see…

That no rock ever reached the bottom…